芯片向人脑靠近,神经拟态计算

在科技飞速发展的今天,神经拟态计算作为一种新兴的技术趋势,正逐渐走进人们的视野。它模仿人脑神经网络的工作原理,力图在计算效率和智能水平上实现新的突破。接下来,让我们一起探寻神经拟态计算的奥秘,以及它如何引领我们走向更加智能的未来。

神经拟态计算,顾名思义,是一种模拟人脑神经网络运作方式的计算技术。与传统的计算架构不同,神经拟态计算不再依赖于传统的冯·诺依曼架构,而是借鉴了生物神经网络的并行处理、自适应学习以及容错性强等特点。这使得神经拟态计算在处理复杂模式识别、大数据分析以及机器学习等任务时,展现出前所未有的优势。

众所周知,人脑是一个高度复杂的系统,拥有数以亿计的神经元,它们通过错综复杂的连接共同完成信息处理任务。神经拟态计算正是受到这一启发,通过构建类似神经元的计算单元,并模拟神经元之间的连接方式,来实现对信息的高效处理。这种计算方式不仅具备强大的并行计算能力,还能在学习过程中不断优化自身的网络结构,从而适应不断变化的任务需求。

从词源上讲,“神经形态”一词的字面意思是“大脑或神经元形状的特征”。但这个术语是否适合该领域或特定处理器可能取决于你问的对象。它可能意味着试图重现人脑中突触和神经元行为的电路,也可能意味着从大脑处理和存储信息的方式中获取概念灵感的计算。

如果听起来神经形态计算(或大脑启发式计算)领域有些悬而未决,那只是因为研究人员在构建模拟大脑的计算机系统时采用了截然不同的方法。IBM 研究部门及其他机构的科学家多年来一直在努力开发这些机器,但该领域尚未找到典型的神经形态架构。

一种常见的脑启发计算方法是创建非常简单、抽象的生物神经元和突触模型。这些模型本质上是使用标量乘法的静态非线性函数。在这种情况下,信息以浮点数的形式传播。当信息被放大时,结果就是深度学习。简单地说,深度学习是脑启发的——所有这些数学神经元加起来就是模仿某些大脑功能的东西。

IBM 研究科学家 Abu Sebastian 表示:“在过去十年左右的时间里,这项技术取得了巨大成功,绝大多数从事与脑启发计算相关工作的人实际上都在从事与此相关的工作。”他表示,通过结合神经元或突触动力学进行交流,可以用其他脑启发方式来用数学模拟神经元。

另一方面,模拟方法使用先进的材料,可以存储 0 到 1 之间的连续电导值,并执行多级处理——使用欧姆定律进行乘法,并使用基尔霍夫电流总和累积部分和。

关键词: 神经拟态计算
更多推荐

厨房里飘着菜香,锅铲与铁锅碰撞出清脆的声响,你正专注地翻炒着木耳,突然“噼啪”一声,滚烫的油星裹挟着木耳碎片飞溅出来,吓得你往后一缩——这样的场景,是否让你对炒木耳心生畏惧?其实,木耳本身并不会“爆炸”,但它的特殊结构和烹饪时的水分变化,确

了解更多 >

人工智能(AI)正在以令人瞩目的速度渗透到我们生活的方方面面。从智能手机中的语音助手到家中的自动清洁机器人,AI的应用已经变得无处不在,改变着我们的生活方式、工作习惯和社交方式等多个层面。首先,在日常生活中,许多人可能对智能助手的融入感受最

了解更多 >

在如今科技飞速发展的时代,显示技术作为人机交互的重要桥梁,其进步与革新一直备受瞩目。曲面屏和直面屏作为两种主流的显示屏幕形态,它们所带来的视觉差异,不仅影响着用户的观感体验,更在一定程度上塑造了电子产品的市场格局。今天,我们就来深入探讨曲面

了解更多 >

在迅速变化的世界中,2023年无疑是科技领域一场激荡人心的革命年。人工智能(AI)的快速普及和应用不仅在科技圈内引起轰动,它对我们日常生活的方方面面也产生了深远的影响。从工作方式到家庭生活,再到教育和社会互动,AI正悄然塑造着我们的未来。看

了解更多 >

在超市的货架上,各式各样的牛奶产品琳琅满目,纯牛奶、鲜牛奶、低温牛奶、常温牛奶等等,让人眼花缭乱。这些牛奶到底有何不同?它们的杀菌方式又是怎样的呢?接下来,我们就来一一探寻。 我们来说说纯牛奶。纯牛奶,顾名思义,就是未经任何添加和处理的原

了解更多 >