芯片向人脑靠近,神经拟态计算
在科技飞速发展的今天,神经拟态计算作为一种新兴的技术趋势,正逐渐走进人们的视野。它模仿人脑神经网络的工作原理,力图在计算效率和智能水平上实现新的突破。接下来,让我们一起探寻神经拟态计算的奥秘,以及它如何引领我们走向更加智能的未来。
神经拟态计算,顾名思义,是一种模拟人脑神经网络运作方式的计算技术。与传统的计算架构不同,神经拟态计算不再依赖于传统的冯·诺依曼架构,而是借鉴了生物神经网络的并行处理、自适应学习以及容错性强等特点。这使得神经拟态计算在处理复杂模式识别、大数据分析以及机器学习等任务时,展现出前所未有的优势。
众所周知,人脑是一个高度复杂的系统,拥有数以亿计的神经元,它们通过错综复杂的连接共同完成信息处理任务。神经拟态计算正是受到这一启发,通过构建类似神经元的计算单元,并模拟神经元之间的连接方式,来实现对信息的高效处理。这种计算方式不仅具备强大的并行计算能力,还能在学习过程中不断优化自身的网络结构,从而适应不断变化的任务需求。
从词源上讲,“神经形态”一词的字面意思是“大脑或神经元形状的特征”。但这个术语是否适合该领域或特定处理器可能取决于你问的对象。它可能意味着试图重现人脑中突触和神经元行为的电路,也可能意味着从大脑处理和存储信息的方式中获取概念灵感的计算。
如果听起来神经形态计算(或大脑启发式计算)领域有些悬而未决,那只是因为研究人员在构建模拟大脑的计算机系统时采用了截然不同的方法。IBM 研究部门及其他机构的科学家多年来一直在努力开发这些机器,但该领域尚未找到典型的神经形态架构。
一种常见的脑启发计算方法是创建非常简单、抽象的生物神经元和突触模型。这些模型本质上是使用标量乘法的静态非线性函数。在这种情况下,信息以浮点数的形式传播。当信息被放大时,结果就是深度学习。简单地说,深度学习是脑启发的——所有这些数学神经元加起来就是模仿某些大脑功能的东西。
IBM 研究科学家 Abu Sebastian 表示:“在过去十年左右的时间里,这项技术取得了巨大成功,绝大多数从事与脑启发计算相关工作的人实际上都在从事与此相关的工作。”他表示,通过结合神经元或突触动力学进行交流,可以用其他脑启发方式来用数学模拟神经元。
另一方面,模拟方法使用先进的材料,可以存储 0 到 1 之间的连续电导值,并执行多级处理——使用欧姆定律进行乘法,并使用基尔霍夫电流总和累积部分和。
新的电子绷带加快糖尿病患者伤口愈合速度30%
慢性伤口,尤其是糖尿病患者中的溃疡,是一个亟待解决的难题。这类伤口不仅愈合缓慢,还容易复发,极大地增加了截肢和死亡的风险。然而,当前慢性伤口的治疗方法往往价格不菲,给患者家庭带来了沉重的经济负担。为了破解这一难题,美国北卡罗莱纳州立大学的研
自动挡汽车长下坡的正确操作
在现代生活中,自动挡汽车已经成为越来越多人的出行选择。其便捷性和舒适性得到了广大车主的青睐。然而,在不同路况下,如何正确操作自动挡汽车,尤其是在长下坡路段,是每位驾驶员都应该了解和掌握的重要技能。 长下坡路段对于驾驶员来说是一个不小的挑战
高效、低噪、长寿命,引领电动新时代
随着科技的飞速发展,电机作为众多设备中的动力之源,其技术进步同样日新月异。无刷电机,作为近年来备受瞩目的技术革新成果,正以其独特的优势,悄然改变着我们的生活。 一、高效能量转换,节能效果显著 无刷电机相较于传统的有刷电机,其最大的亮点在
短时间剧烈运动可降低女性心脏病发作风险
在现代生活的快节奏中,我们时常被繁忙的工作和琐碎的日常所牵绊,久而久之,身体健康逐渐被忽视。然而,一项新的研究发现,即便是短时间的剧烈运动,也能显著降低女性心脏病发作的风险。这无疑为忙碌的现代女性提供了一条简单易行的健康之道。 心脏病,这
显卡光追技术:原理、发展历程与优势一探
在数字图形渲染领域,光线追踪(Ray Tracing)技术正逐渐崭露头角,成为高端显卡所标配的一项重要功能。光线追踪,简称光追,是一种模拟光线在三维空间中行进并与物体交互的渲染技术,能够生成逼真的光影效果,极大地提升了游戏和电影的视觉质量。